Code cleaning
This commit is contained in:
@@ -260,7 +260,7 @@ def receive_jellyfin_webhook(
|
||||
fullpath = get_jellyfin_file_name(ItemId, jellyfinserver, jellyfintoken)
|
||||
logging.debug(f"Path of file: {fullpath}")
|
||||
|
||||
gen_subtitles(path_mapping(fullpath), transcribe_or_translate, True)
|
||||
titles(path_mapping(fullpath), transcribe_or_translate, True)
|
||||
try:
|
||||
refresh_jellyfin_metadata(ItemId, jellyfinserver, jellyfintoken)
|
||||
logging.info(f"Metadata for item {ItemId} refreshed successfully.")
|
||||
@@ -287,7 +287,7 @@ def receive_emby_webhook(
|
||||
if((event == "library.new" and procaddedmedia) or (event == "playback.start" and procmediaonplay)):
|
||||
logging.debug("Path of file: " + fullpath)
|
||||
|
||||
gen_subtitles(path_mapping(fullpath), transcribe_or_translate, True)
|
||||
titles(path_mapping(fullpath), transcribe_or_translate, True)
|
||||
else:
|
||||
return {"This doesn't appear to be a properly configured Emby webhook, please review the instructions again!"}
|
||||
|
||||
@@ -315,16 +315,16 @@ def asr(
|
||||
try:
|
||||
logging.info(f"Transcribing file from Bazarr/ASR webhook")
|
||||
result = None
|
||||
#give the 'process' a random name so mutliple Bazaar transcribes can operate at the same time.
|
||||
random_name = random.choices("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890", k=6)
|
||||
random_name = ''.join(random.choices(string.ascii_letters + string.digits, k=6))
|
||||
|
||||
start_time = time.time()
|
||||
start_model()
|
||||
files_to_transcribe.insert(0, f"Bazarr-asr-{random_name}")
|
||||
audio_data = np.frombuffer(audio_file.file.read(), np.int16).flatten().astype(np.float32) / 32768.0
|
||||
if(hf_transformers):
|
||||
result = model.transcribe(np.frombuffer(audio_file.file.read(), np.int16).flatten().astype(np.float32) / 32768.0, task=task, input_sr=16000, language=language, batch_size=hf_batch_size, progress_callback=progress)
|
||||
result = model.transcribe(np.frombuffer(audio_data, task=task, input_sr=16000, language=language, batch_size=hf_batch_size, progress_callback=progress)
|
||||
else:
|
||||
result = model.transcribe_stable(np.frombuffer(audio_file.file.read(), np.int16).flatten().astype(np.float32) / 32768.0, task=task, input_sr=16000, language=language, progress_callback=progress)
|
||||
result = model.transcribe_stable(np.frombuffer(audio_data, task=task, input_sr=16000, language=language, progress_callback=progress)
|
||||
appendLine(result)
|
||||
elapsed_time = time.time() - start_time
|
||||
minutes, seconds = divmod(int(elapsed_time), 60)
|
||||
@@ -353,15 +353,15 @@ def detect_language(
|
||||
):
|
||||
detected_lang_code = "" # Initialize with an empty string
|
||||
try:
|
||||
#give the 'process' a random name so mutliple Bazaar transcribes can operate at the same time.
|
||||
random_name = random.choices("abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890", k=6)
|
||||
random_name = ''.join(random.choices(string.ascii_letters + string.digits, k=6))
|
||||
start_model()
|
||||
|
||||
files_to_transcribe.insert(0, f"Bazarr-detect-language-{random_name}")
|
||||
audio_data = np.frombuffer(audio_file.file.read(), np.int16).flatten().astype(np.float32) / 32768.0
|
||||
if(hf_transformers):
|
||||
detected_lang_code = model.transcribe(whisper.pad_or_trim(np.frombuffer(audio_file.file.read(), np.int16).flatten().astype(np.float32) / 32768.0), input_sr=16000, batch_size=hf_batch_size).language
|
||||
detected_lang_code = model.transcribe(whisper.pad_or_trim(audio_data, input_sr=16000, batch_size=hf_batch_size).language
|
||||
else:
|
||||
detected_lang_code = model.transcribe_stable(whisper.pad_or_trim(np.frombuffer(audio_file.file.read(), np.int16).flatten().astype(np.float32) / 32768.0), input_sr=16000).language
|
||||
detected_lang_code = model.transcribe_stable(whisper.pad_or_trim(np.frombuffer(audio_data, input_sr=16000).language
|
||||
|
||||
except Exception as e:
|
||||
logging.info(f"Error processing or transcribing Bazarr {audio_file.filename}: {e}")
|
||||
@@ -384,20 +384,20 @@ def start_model():
|
||||
model = stable_whisper.load_faster_whisper(whisper_model, download_root=model_location, device=transcribe_device, cpu_threads=whisper_threads, num_workers=concurrent_transcriptions, compute_type=compute_type)
|
||||
|
||||
def delete_model():
|
||||
if clear_vram_on_complete:
|
||||
if len(files_to_transcribe) == 0:
|
||||
global model
|
||||
logging.debug("Queue is empty, clearing/releasing VRAM")
|
||||
model = None
|
||||
gc.collect()
|
||||
if clear_vram_on_complete and len(files_to_transcribe) == 0:
|
||||
global model
|
||||
logging.debug("Queue is empty, clearing/releasing VRAM")
|
||||
model = None
|
||||
gc.collect()
|
||||
|
||||
def gen_subtitles(file_path: str, transcribe_or_translate: str, front=True, forceLanguage=None) -> None:
|
||||
"""Generates subtitles for a video file.
|
||||
|
||||
Args:
|
||||
file_path: The path to the video file.
|
||||
transcription_or_translation: The type of transcription or translation to perform.
|
||||
front: Whether to add the file to the front of the transcription queue.
|
||||
file_path: str - The path to the video file.
|
||||
transcribe_or_translate: str - The type of transcription or translation to perform.
|
||||
front: bool - Whether to add the file to the front of the transcription queue. Default is True.
|
||||
forceLanguage: str - The language to force for transcription or translation. Default is None.
|
||||
"""
|
||||
|
||||
try:
|
||||
|
||||
Reference in New Issue
Block a user