Update subgen.py

Added APPEND (From JaiZed).  Will add f"Transcribed by whisperAI with faster-whisper ({whisper_model}) on {datetime.now()}" at the end of a subtitle.
This commit is contained in:
McCloudS
2024-02-11 14:57:09 -07:00
committed by GitHub
parent 79516ed2e7
commit bd9dd9f29e

View File

@@ -54,6 +54,8 @@ hf_transformers = convert_to_bool(os.getenv('HF_TRANSFORMERS', False))
hf_batch_size = int(os.getenv('HF_BATCH_SIZE', 24))
clear_vram_on_complete = convert_to_bool(os.getenv('CLEAR_VRAM_ON_COMPLETE', True))
compute_type = os.getenv('COMPUTE_TYPE', 'auto')
append = convert_to_bool(os.getenv('APPEND', False))
if transcribe_device == "gpu":
transcribe_device = "cuda"
@@ -72,6 +74,20 @@ logging.getLogger("multipart").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("asyncio").setLevel(logging.WARNING)
TIME_OFFSET = 5
def appendLine(result):
if append:
lastSegment = result.segments[-1].copy()
lastSegment.id += 1
lastSegment.start += TIME_OFFSET
lastSegment.end += TIME_OFFSET
lastSegment.text = f"Transcribed by whisperAI with faster-whisper ({whisper_model}) on {datetime.now()}"
lastSegment.words = []
# lastSegment.words[0].word = lastSegment.text
# lastSegment.words = lastSegment.words[:len(lastSegment.words)-1]
result.segments.append(lastSegment)
@app.get("/plex")
@app.get("/webhook")
@app.get("/jellyfin")
@@ -212,6 +228,7 @@ def asr(
result = model.transcribe(np.frombuffer(audio_file.file.read(), np.int16).flatten().astype(np.float32) / 32768.0, task=task, input_sr=16000, language=language, batch_size=hf_batch_size)
else:
result = model.transcribe_stable(np.frombuffer(audio_file.file.read(), np.int16).flatten().astype(np.float32) / 32768.0, task=task, input_sr=16000, language=language)
appendLine(result)
elapsed_time = time.time() - start_time
minutes, seconds = divmod(int(elapsed_time), 60)
print(f"Bazarr transcription is completed, it took {minutes} minutes and {seconds} seconds to complete.")
@@ -339,6 +356,7 @@ def gen_subtitles(file_path: str, transcribe_or_translate: str, front=True, forc
result = model.transcribe(file_path, language=forceLanguage, batch_size=hf_batch_size, task=transcribe_or_translate)
else:
result = model.transcribe_stable(file_path, language=forceLanguage, task=transcribe_or_translate)
appendLine(result)
result.to_srt_vtt(get_file_name_without_extension(file_path) + subextension, word_level=word_level_highlight)
elapsed_time = time.time() - start_time
minutes, seconds = divmod(int(elapsed_time), 60)