- Add Worker class with CPU/GPU support - Add WorkerPool for orchestrating multiple workers - Support dynamic add/remove workers at runtime - Add health monitoring with graceful shutdown
494 lines
18 KiB
Python
494 lines
18 KiB
Python
"""Individual worker for processing transcription jobs."""
|
|
import logging
|
|
import multiprocessing as mp
|
|
import os
|
|
import time
|
|
import traceback
|
|
from datetime import datetime, timezone
|
|
from enum import IntEnum, Enum
|
|
from typing import Optional
|
|
|
|
from backend.core.database import Database
|
|
from backend.core.models import Job, JobStatus, JobStage
|
|
from backend.core.queue_manager import QueueManager
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class WorkerType(str, Enum):
|
|
"""Worker device type."""
|
|
CPU = "cpu"
|
|
GPU = "gpu"
|
|
|
|
|
|
class WorkerStatus(IntEnum):
|
|
"""Worker status states."""
|
|
IDLE = 0
|
|
BUSY = 1
|
|
STOPPING = 2
|
|
STOPPED = 3
|
|
ERROR = 4
|
|
|
|
def to_string(self) -> str:
|
|
"""Convert to string representation."""
|
|
return {
|
|
0: "idle",
|
|
1: "busy",
|
|
2: "stopping",
|
|
3: "stopped",
|
|
4: "error"
|
|
}.get(self.value, "unknown")
|
|
|
|
|
|
class Worker:
|
|
"""
|
|
Individual worker process for transcription.
|
|
|
|
Each worker runs in its own process and can handle one job at a time.
|
|
Workers communicate with the main process via multiprocessing primitives.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
worker_id: str,
|
|
worker_type: WorkerType,
|
|
device_id: Optional[int] = None
|
|
):
|
|
"""
|
|
Initialize worker.
|
|
|
|
Args:
|
|
worker_id: Unique identifier for this worker
|
|
worker_type: CPU or GPU
|
|
device_id: GPU device ID (only for GPU workers)
|
|
"""
|
|
self.worker_id = worker_id
|
|
self.worker_type = worker_type
|
|
self.device_id = device_id
|
|
|
|
# Multiprocessing primitives
|
|
self.process: Optional[mp.Process] = None
|
|
self.stop_event = mp.Event()
|
|
self.status = mp.Value('i', WorkerStatus.IDLE.value) # type: ignore
|
|
self.current_job_id = mp.Array('c', 36) # type: ignore # UUID string
|
|
|
|
# Stats
|
|
self.jobs_completed = mp.Value('i', 0) # type: ignore
|
|
self.jobs_failed = mp.Value('i', 0) # type: ignore
|
|
self.started_at: Optional[datetime] = None
|
|
|
|
def start(self):
|
|
"""Start the worker process."""
|
|
if self.process and self.process.is_alive():
|
|
logger.warning(f"Worker {self.worker_id} is already running")
|
|
return
|
|
|
|
self.stop_event.clear()
|
|
self.process = mp.Process(
|
|
target=self._worker_loop,
|
|
name=f"Worker-{self.worker_id}",
|
|
daemon=True
|
|
)
|
|
self.process.start()
|
|
self.started_at = datetime.now(timezone.utc)
|
|
logger.info(
|
|
f"Worker {self.worker_id} started (PID: {self.process.pid}, "
|
|
f"Type: {self.worker_type.value})"
|
|
)
|
|
|
|
def stop(self, timeout: float = 5.0):
|
|
"""
|
|
Stop the worker process gracefully.
|
|
|
|
Args:
|
|
timeout: Maximum time to wait for worker to stop
|
|
"""
|
|
if not self.process or not self.process.is_alive():
|
|
logger.debug(f"Worker {self.worker_id} is not running")
|
|
return
|
|
|
|
logger.info(f"Stopping worker {self.worker_id}...")
|
|
self.stop_event.set()
|
|
self.process.join(timeout=timeout)
|
|
|
|
if self.process.is_alive():
|
|
logger.warning(f"Worker {self.worker_id} did not stop gracefully, terminating...")
|
|
self.process.terminate()
|
|
self.process.join(timeout=2.0)
|
|
|
|
if self.process.is_alive():
|
|
logger.error(f"Worker {self.worker_id} did not terminate, killing...")
|
|
self.process.kill()
|
|
self.process.join(timeout=1.0)
|
|
|
|
logger.info(f"Worker {self.worker_id} stopped")
|
|
|
|
def is_alive(self) -> bool:
|
|
"""Check if worker process is alive."""
|
|
return self.process is not None and self.process.is_alive()
|
|
|
|
def get_status(self) -> dict:
|
|
"""Get worker status information."""
|
|
status_value = self.status.value
|
|
status_enum = WorkerStatus.IDLE
|
|
for s in WorkerStatus:
|
|
if s.value == status_value:
|
|
status_enum = s
|
|
break
|
|
|
|
current_job = self.current_job_id.value.decode('utf-8').strip('\x00')
|
|
|
|
return {
|
|
"worker_id": self.worker_id,
|
|
"type": self.worker_type.value,
|
|
"device_id": self.device_id,
|
|
"status": status_enum.to_string(), # Convert to string
|
|
"current_job_id": current_job if current_job else None,
|
|
"jobs_completed": self.jobs_completed.value,
|
|
"jobs_failed": self.jobs_failed.value,
|
|
"is_alive": self.is_alive(),
|
|
"pid": self.process.pid if self.process else None,
|
|
"started_at": self.started_at.isoformat() if self.started_at else None,
|
|
}
|
|
|
|
def _worker_loop(self):
|
|
"""
|
|
Main worker loop (runs in separate process).
|
|
|
|
This is the entry point for the worker process.
|
|
"""
|
|
# Set up logging in the worker process
|
|
logging.basicConfig(
|
|
level=logging.INFO,
|
|
format=f'[Worker-{self.worker_id}] %(levelname)s: %(message)s'
|
|
)
|
|
|
|
logger.info(f"Worker {self.worker_id} loop started")
|
|
|
|
# Initialize database and queue manager in worker process
|
|
# Each process needs its own DB connection
|
|
try:
|
|
db = Database(auto_create_tables=False)
|
|
queue_mgr = QueueManager()
|
|
except Exception as e:
|
|
logger.error(f"Failed to initialize worker: {e}")
|
|
self._set_status(WorkerStatus.ERROR)
|
|
return
|
|
|
|
# Main work loop
|
|
while not self.stop_event.is_set():
|
|
try:
|
|
# Try to get next job from queue
|
|
job = queue_mgr.get_next_job(self.worker_id)
|
|
|
|
if job is None:
|
|
# No jobs available, idle for a bit
|
|
self._set_status(WorkerStatus.IDLE)
|
|
time.sleep(2)
|
|
continue
|
|
|
|
# Process the job
|
|
self._set_status(WorkerStatus.BUSY)
|
|
self._set_current_job(job.id)
|
|
|
|
logger.info(f"Processing job {job.id}: {job.file_name}")
|
|
|
|
try:
|
|
self._process_job(job, queue_mgr)
|
|
self.jobs_completed.value += 1
|
|
logger.info(f"Job {job.id} completed successfully")
|
|
|
|
except Exception as e:
|
|
self.jobs_failed.value += 1
|
|
error_msg = f"Job processing failed: {str(e)}\n{traceback.format_exc()}"
|
|
logger.error(error_msg)
|
|
|
|
queue_mgr.mark_job_failed(job.id, error_msg)
|
|
|
|
finally:
|
|
self._clear_current_job()
|
|
|
|
except Exception as e:
|
|
logger.error(f"Worker loop error: {e}\n{traceback.format_exc()}")
|
|
time.sleep(5) # Back off on errors
|
|
|
|
self._set_status(WorkerStatus.STOPPED)
|
|
logger.info(f"Worker {self.worker_id} loop ended")
|
|
|
|
def _process_job(self, job: Job, queue_mgr: QueueManager):
|
|
"""
|
|
Process a job (transcription or language detection).
|
|
|
|
Args:
|
|
job: Job to process
|
|
queue_mgr: Queue manager for updating progress
|
|
"""
|
|
from backend.core.models import JobType
|
|
|
|
# Route to appropriate handler based on job type
|
|
if job.job_type == JobType.LANGUAGE_DETECTION:
|
|
self._process_language_detection(job, queue_mgr)
|
|
else:
|
|
self._process_transcription(job, queue_mgr)
|
|
|
|
def _process_language_detection(self, job: Job, queue_mgr: QueueManager):
|
|
"""
|
|
Process a language detection job using fast Whisper model.
|
|
|
|
Args:
|
|
job: Language detection job
|
|
queue_mgr: Queue manager for updating progress
|
|
"""
|
|
start_time = time.time()
|
|
|
|
try:
|
|
logger.info(f"Worker {self.worker_id} processing LANGUAGE DETECTION job {job.id}: {job.file_name}")
|
|
|
|
# Stage 1: Detecting language (20% progress)
|
|
queue_mgr.update_job_progress(
|
|
job.id, progress=20.0, stage=JobStage.DETECTING_LANGUAGE, eta_seconds=10
|
|
)
|
|
|
|
# Use language detector with tiny model
|
|
from backend.scanning.language_detector import LanguageDetector
|
|
|
|
language, confidence = LanguageDetector.detect_language(
|
|
file_path=job.file_path,
|
|
sample_duration=30
|
|
)
|
|
|
|
# Stage 2: Finalizing (80% progress)
|
|
queue_mgr.update_job_progress(
|
|
job.id, progress=80.0, stage=JobStage.FINALIZING, eta_seconds=2
|
|
)
|
|
|
|
if language:
|
|
# Calculate processing time
|
|
processing_time = time.time() - start_time
|
|
|
|
# Use ISO 639-1 format (ja, en, es) throughout the system
|
|
lang_code = language.value[0] if language else "unknown"
|
|
|
|
result_text = f"Language detected: {lang_code} ({language.name.title() if language else 'Unknown'})\nConfidence: {confidence}%"
|
|
|
|
# Store in ISO 639-1 format (ja, en, es) for consistency
|
|
queue_mgr.mark_job_completed(
|
|
job.id,
|
|
output_path=None,
|
|
segments_count=0,
|
|
srt_content=result_text,
|
|
detected_language=lang_code # Use ISO 639-1 (ja, en, es)
|
|
)
|
|
|
|
logger.info(
|
|
f"Worker {self.worker_id} completed detection job {job.id}: "
|
|
f"{lang_code} (confidence: {confidence}%) in {processing_time:.1f}s"
|
|
)
|
|
|
|
# Check if file matches any scan rules and queue transcription job
|
|
self._check_and_queue_transcription(job, lang_code)
|
|
else:
|
|
# Detection failed
|
|
queue_mgr.mark_job_failed(job.id, "Language detection failed - could not detect language")
|
|
logger.error(f"Worker {self.worker_id} failed detection job {job.id}: No language detected")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Worker {self.worker_id} failed detection job {job.id}: {e}", exc_info=True)
|
|
queue_mgr.mark_job_failed(job.id, str(e))
|
|
|
|
def _process_transcription(self, job: Job, queue_mgr: QueueManager):
|
|
"""
|
|
Process a transcription/translation job using Whisper.
|
|
|
|
Args:
|
|
job: Transcription job
|
|
queue_mgr: Queue manager for updating progress
|
|
"""
|
|
from backend.transcription import WhisperTranscriber
|
|
from backend.transcription.audio_utils import handle_multiple_audio_tracks
|
|
from backend.core.language_code import LanguageCode
|
|
|
|
transcriber = None
|
|
start_time = time.time()
|
|
|
|
try:
|
|
logger.info(f"Worker {self.worker_id} processing TRANSCRIPTION job {job.id}: {job.file_name}")
|
|
|
|
# Stage 1: Loading model
|
|
queue_mgr.update_job_progress(
|
|
job.id, progress=5.0, stage=JobStage.LOADING_MODEL, eta_seconds=None
|
|
)
|
|
|
|
# Determine device for transcriber
|
|
if self.worker_type == WorkerType.GPU:
|
|
device = f"cuda:{self.device_id}" if self.device_id is not None else "cuda"
|
|
else:
|
|
device = "cpu"
|
|
|
|
transcriber = WhisperTranscriber(device=device)
|
|
transcriber.load_model()
|
|
|
|
# Stage 2: Preparing audio
|
|
queue_mgr.update_job_progress(
|
|
job.id, progress=10.0, stage=JobStage.EXTRACTING_AUDIO, eta_seconds=None
|
|
)
|
|
|
|
# Handle multiple audio tracks if needed
|
|
source_lang = (
|
|
LanguageCode.from_string(job.source_lang) if job.source_lang else None
|
|
)
|
|
audio_data = handle_multiple_audio_tracks(job.file_path, source_lang)
|
|
|
|
# Stage 3: Transcribing
|
|
queue_mgr.update_job_progress(
|
|
job.id, progress=15.0, stage=JobStage.TRANSCRIBING, eta_seconds=None
|
|
)
|
|
|
|
# Progress callback for real-time updates
|
|
def progress_callback(seek, total):
|
|
# Reserve 15%-75% for Whisper (60% range)
|
|
# If translate mode, reserve 75%-90% for translation (15% range)
|
|
whisper_progress = 15.0 + (seek / total) * 60.0
|
|
queue_mgr.update_job_progress(job.id, progress=whisper_progress, stage=JobStage.TRANSCRIBING)
|
|
|
|
# Stage 3A: Whisper transcription to English
|
|
# IMPORTANT: Both 'transcribe' and 'translate' modes use task='translate' here
|
|
# to convert audio to English subtitles
|
|
logger.info(f"Running Whisper with task='translate' to convert audio to English")
|
|
|
|
# job.source_lang is already in ISO 639-1 format (ja, en, es)
|
|
# Whisper accepts ISO 639-1, so we can use it directly
|
|
if audio_data:
|
|
result = transcriber.transcribe_audio_data(
|
|
audio_data=audio_data.read(),
|
|
language=job.source_lang, # Already ISO 639-1 (ja, en, es)
|
|
task="translate", # ALWAYS translate to English first
|
|
progress_callback=progress_callback,
|
|
)
|
|
else:
|
|
result = transcriber.transcribe_file(
|
|
file_path=job.file_path,
|
|
language=job.source_lang, # Already ISO 639-1 (ja, en, es)
|
|
task="translate", # ALWAYS translate to English first
|
|
progress_callback=progress_callback,
|
|
)
|
|
|
|
# Generate English SRT filename
|
|
file_base = os.path.splitext(job.file_path)[0]
|
|
english_srt_path = f"{file_base}.eng.srt"
|
|
|
|
# Save English SRT
|
|
result.to_srt(english_srt_path, word_level=False)
|
|
logger.info(f"English subtitles saved to {english_srt_path}")
|
|
|
|
# Stage 3B: Optional translation to target language
|
|
if job.transcribe_or_translate == "translate" and job.target_lang and job.target_lang.lower() != "eng":
|
|
queue_mgr.update_job_progress(
|
|
job.id, progress=75.0, stage=JobStage.FINALIZING, eta_seconds=10
|
|
)
|
|
|
|
logger.info(f"Translating English subtitles to {job.target_lang}")
|
|
|
|
from backend.transcription import translate_srt_file
|
|
|
|
# Generate target language SRT filename
|
|
target_srt_path = f"{file_base}.{job.target_lang}.srt"
|
|
|
|
# Translate English SRT to target language
|
|
success = translate_srt_file(
|
|
input_path=english_srt_path,
|
|
output_path=target_srt_path,
|
|
target_language=job.target_lang
|
|
)
|
|
|
|
if success:
|
|
logger.info(f"Translated subtitles saved to {target_srt_path}")
|
|
output_path = target_srt_path
|
|
else:
|
|
logger.warning(f"Translation failed, keeping English subtitles only")
|
|
output_path = english_srt_path
|
|
else:
|
|
# For 'transcribe' mode or if target is English, use English SRT
|
|
output_path = english_srt_path
|
|
|
|
# Stage 4: Finalize
|
|
queue_mgr.update_job_progress(
|
|
job.id, progress=90.0, stage=JobStage.FINALIZING, eta_seconds=5
|
|
)
|
|
|
|
# Calculate processing time
|
|
processing_time = time.time() - start_time
|
|
|
|
# Get SRT content for storage
|
|
srt_content = result.get_srt_content()
|
|
|
|
# Mark job as completed
|
|
queue_mgr.mark_job_completed(
|
|
job.id,
|
|
output_path=output_path,
|
|
segments_count=result.segments_count,
|
|
srt_content=srt_content,
|
|
model_used=transcriber.model_name,
|
|
device_used=transcriber.device,
|
|
processing_time_seconds=processing_time,
|
|
)
|
|
|
|
logger.info(
|
|
f"Worker {self.worker_id} completed job {job.id}: "
|
|
f"{result.segments_count} segments in {processing_time:.1f}s"
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error(f"Worker {self.worker_id} failed job {job.id}: {e}", exc_info=True)
|
|
queue_mgr.mark_job_failed(job.id, str(e))
|
|
finally:
|
|
# Always unload model after job
|
|
if transcriber:
|
|
try:
|
|
transcriber.unload_model()
|
|
except Exception as e:
|
|
logger.error(f"Error unloading model: {e}")
|
|
|
|
def _set_status(self, status: WorkerStatus):
|
|
"""Set worker status (thread-safe)."""
|
|
self.status.value = status.value
|
|
|
|
def _set_current_job(self, job_id: str):
|
|
"""Set the current job ID (thread-safe)."""
|
|
job_id_bytes = job_id.encode('utf-8')
|
|
for i, byte in enumerate(job_id_bytes):
|
|
if i < len(self.current_job_id):
|
|
self.current_job_id[i] = byte
|
|
|
|
def _clear_current_job(self):
|
|
"""Clear current job ID (thread-safe)."""
|
|
for i in range(len(self.current_job_id)):
|
|
self.current_job_id[i] = b'\x00'
|
|
|
|
def _check_and_queue_transcription(self, job: Job, detected_lang_code: str):
|
|
"""
|
|
Check if detected language matches any scan rules and queue transcription job.
|
|
|
|
Args:
|
|
job: Completed language detection job
|
|
detected_lang_code: Detected language code (ISO 639-1, e.g., 'ja', 'en')
|
|
"""
|
|
try:
|
|
from backend.scanning.library_scanner import library_scanner
|
|
|
|
logger.info(
|
|
f"Language detection completed for {job.file_path}: {detected_lang_code}. "
|
|
f"Checking scan rules..."
|
|
)
|
|
|
|
# Use the scanner's method to check rules and queue transcription
|
|
library_scanner._check_and_queue_transcription_for_file(
|
|
job.file_path, detected_lang_code
|
|
)
|
|
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Error checking scan rules for {job.file_path}: {e}",
|
|
exc_info=True
|
|
)
|