feat(transcription): add Whisper transcriber and audio utilities

- Add WhisperTranscriber wrapper for stable-ts/faster-whisper
- Add audio utilities for ffmpeg/ffprobe operations
- Add translator for two-stage translation workflow
- Support CPU/GPU with graceful degradation
This commit is contained in:
2026-01-16 16:55:02 +01:00
parent d28c4caa6a
commit cbf5ef9623
4 changed files with 965 additions and 0 deletions

View File

@@ -0,0 +1,408 @@
"""Whisper transcription wrapper for worker processes."""
import logging
import os
import gc
import ctypes
import ctypes.util
from typing import Optional, Callable
from io import BytesIO
import numpy as np
# Optional imports - graceful degradation if not available
try:
import stable_whisper
import torch
WHISPER_AVAILABLE = True
except ImportError:
stable_whisper = None
torch = None
WHISPER_AVAILABLE = False
logging.warning("stable_whisper or torch not available. Transcription will not work.")
logger = logging.getLogger(__name__)
class TranscriptionResult:
"""Result of a transcription operation."""
def __init__(self, result, language: str, segments_count: int):
"""
Initialize transcription result.
Args:
result: stable-ts result object
language: Detected or forced language
segments_count: Number of subtitle segments
"""
self.result = result
self.language = language
self.segments_count = segments_count
def to_srt(self, output_path: str, word_level: bool = False) -> str:
"""
Save result as SRT file.
Args:
output_path: Path to save SRT file
word_level: Enable word-level timestamps
Returns:
Path to saved file
"""
self.result.to_srt_vtt(output_path, word_level=word_level)
return output_path
def get_srt_content(self, word_level: bool = False) -> str:
"""
Get SRT content as string.
Args:
word_level: Enable word-level timestamps
Returns:
SRT content
"""
return "".join(self.result.to_srt_vtt(filepath=None, word_level=word_level))
class WhisperTranscriber:
"""
Whisper transcription engine wrapper.
Manages Whisper model loading/unloading and transcription operations.
Designed to run in worker processes with isolated model instances.
"""
def __init__(
self,
model_name: Optional[str] = None,
device: Optional[str] = None,
model_path: Optional[str] = None,
compute_type: Optional[str] = None,
threads: Optional[int] = None,
):
"""
Initialize transcriber.
Args:
model_name: Whisper model name (tiny, base, small, medium, large, etc.)
device: Device to use (cpu, cuda, gpu)
model_path: Path to store/load models
compute_type: Compute type (auto, int8, float16, etc.)
threads: Number of CPU threads
"""
# Import settings_service here to avoid circular imports
from backend.core.settings_service import settings_service
# Load from database settings with sensible defaults
self.model_name = model_name or settings_service.get('whisper_model', 'medium')
self.device = (device or settings_service.get('transcribe_device', 'cpu')).lower()
if self.device == "gpu":
self.device = "cuda"
self.model_path = model_path or settings_service.get('model_path', './models')
# Get compute_type from settings based on device type
if compute_type:
requested_compute_type = compute_type
elif self.device == "cpu":
requested_compute_type = settings_service.get('cpu_compute_type', 'auto')
else:
requested_compute_type = settings_service.get('gpu_compute_type', 'auto')
# Auto-detect compatible compute_type based on device
self.compute_type = self._get_compatible_compute_type(self.device, requested_compute_type)
self.threads = threads or int(settings_service.get('whisper_threads', 4))
self.model = None
self.is_loaded = False
if self.compute_type != requested_compute_type:
logger.warning(
f"Requested compute_type '{requested_compute_type}' is not compatible with device '{self.device}'. "
f"Using '{self.compute_type}' instead."
)
logger.info(
f"WhisperTranscriber initialized: model={self.model_name}, "
f"device={self.device}, compute_type={self.compute_type}"
)
def _get_compatible_compute_type(self, device: str, requested: str) -> str:
"""
Get compatible compute type for the device.
CPU: Only supports int8 and float32
GPU: Supports float16, float32, int8, int8_float16
Args:
device: Device type (cpu, cuda)
requested: Requested compute type
Returns:
Compatible compute type
"""
if device == "cpu":
# CPU only supports int8 and float32
if requested == "auto":
return "int8" # int8 is faster on CPU
elif requested in ("float16", "int8_float16"):
logger.warning(f"CPU doesn't support {requested}, falling back to int8")
return "int8"
elif requested in ("int8", "float32"):
return requested
else:
logger.warning(f"Unknown compute type {requested}, using int8")
return "int8"
else:
# CUDA/GPU supports all types
if requested == "auto":
return "float16" # float16 is recommended for GPU
elif requested in ("float16", "float32", "int8", "int8_float16"):
return requested
else:
logger.warning(f"Unknown compute type {requested}, using float16")
return "float16"
def load_model(self):
"""Load Whisper model into memory."""
if not WHISPER_AVAILABLE:
raise RuntimeError(
"Whisper is not available. Install with: pip install stable-ts faster-whisper"
)
if self.is_loaded and self.model is not None:
logger.debug("Model already loaded")
return
try:
logger.info(f"Loading Whisper model: {self.model_name}")
self.model = stable_whisper.load_faster_whisper(
self.model_name,
download_root=self.model_path,
device=self.device,
cpu_threads=self.threads,
num_workers=1, # Each worker has own model
compute_type=self.compute_type if self.device == "gpu" or self.device == "cuda" else "float32",
)
self.is_loaded = True
logger.info(f"Model {self.model_name} loaded successfully")
except Exception as e:
logger.error(f"Failed to load model {self.model_name}: {e}")
raise
def unload_model(self):
"""Unload model from memory and clear cache."""
if not self.is_loaded or self.model is None:
logger.debug("Model not loaded, nothing to unload")
return
try:
logger.info("Unloading Whisper model")
# Unload the model
if hasattr(self.model, "model") and hasattr(self.model.model, "unload_model"):
self.model.model.unload_model()
del self.model
self.model = None
self.is_loaded = False
# Clear CUDA cache if using GPU
if self.device == "cuda" and torch.cuda.is_available():
torch.cuda.empty_cache()
logger.debug("CUDA cache cleared")
# Garbage collection
if os.name != "nt": # Don't run on Windows
gc.collect()
try:
ctypes.CDLL(ctypes.util.find_library("c")).malloc_trim(0)
except Exception:
pass
logger.info("Model unloaded successfully")
except Exception as e:
logger.error(f"Error unloading model: {e}")
def transcribe_file(
self,
file_path: str,
language: Optional[str] = None,
task: str = "transcribe",
progress_callback: Optional[Callable] = None,
) -> TranscriptionResult:
"""
Transcribe a media file.
Args:
file_path: Path to media file
language: Language code (ISO 639-1) or None for auto-detect
task: 'transcribe' or 'translate'
progress_callback: Optional callback for progress updates
Returns:
TranscriptionResult object
Raises:
Exception: If transcription fails
"""
# Ensure model is loaded
if not self.is_loaded:
self.load_model()
try:
logger.info(f"Transcribing file: {file_path} (language={language}, task={task})")
# Prepare transcription arguments
args = {}
if progress_callback:
args["progress_callback"] = progress_callback
# Add custom regroup if configured
from backend.core.settings_service import settings_service
custom_regroup = settings_service.get('custom_regroup', 'cm_sl=84_sl=42++++++1')
if custom_regroup:
args["regroup"] = custom_regroup
# Perform transcription
result = self.model.transcribe(
file_path,
language=language,
task=task,
**args,
)
segments_count = len(result.segments) if hasattr(result, "segments") else 0
detected_language = result.language if hasattr(result, "language") else language or "unknown"
logger.info(
f"Transcription completed: {segments_count} segments, "
f"language={detected_language}"
)
return TranscriptionResult(
result=result,
language=detected_language,
segments_count=segments_count,
)
except Exception as e:
logger.error(f"Transcription failed for {file_path}: {e}")
raise
def transcribe_audio_data(
self,
audio_data: bytes,
language: Optional[str] = None,
task: str = "transcribe",
sample_rate: int = 16000,
progress_callback: Optional[Callable] = None,
) -> TranscriptionResult:
"""
Transcribe raw audio data (for Bazarr provider mode).
Args:
audio_data: Raw audio bytes
language: Language code or None
task: 'transcribe' or 'translate'
sample_rate: Audio sample rate
progress_callback: Optional progress callback
Returns:
TranscriptionResult object
"""
if not self.is_loaded:
self.load_model()
try:
logger.info(f"Transcribing audio data (size={len(audio_data)} bytes)")
args = {
"audio": audio_data,
"input_sr": sample_rate,
}
if progress_callback:
args["progress_callback"] = progress_callback
from backend.core.settings_service import settings_service
custom_regroup = settings_service.get('custom_regroup', 'cm_sl=84_sl=42++++++1')
if custom_regroup:
args["regroup"] = custom_regroup
result = self.model.transcribe(task=task, language=language, **args)
segments_count = len(result.segments) if hasattr(result, "segments") else 0
detected_language = result.language if hasattr(result, "language") else language or "unknown"
logger.info(f"Audio transcription completed: {segments_count} segments")
return TranscriptionResult(
result=result,
language=detected_language,
segments_count=segments_count,
)
except Exception as e:
logger.error(f"Audio transcription failed: {e}")
raise
def detect_language(
self,
file_path: str,
offset: int = 0,
length: int = 30,
) -> str:
"""
Detect language of a media file.
Args:
file_path: Path to media file
offset: Start offset in seconds
length: Duration to analyze in seconds
Returns:
Language code (ISO 639-1)
"""
if not self.is_loaded:
self.load_model()
try:
logger.info(f"Detecting language for: {file_path} (offset={offset}s, length={length}s)")
# Extract audio segment for analysis
from backend.transcription.audio_utils import extract_audio_segment
audio_segment = extract_audio_segment(file_path, offset, length)
result = self.model.transcribe(audio_segment.read())
detected_language = result.language if hasattr(result, "language") else "unknown"
logger.info(f"Detected language: {detected_language}")
return detected_language
except Exception as e:
logger.error(f"Language detection failed for {file_path}: {e}")
return "unknown"
def __enter__(self):
"""Context manager entry."""
self.load_model()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
"""Context manager exit."""
from backend.core.settings_service import settings_service
if settings_service.get('clear_vram_on_complete', True) in (True, 'true', 'True', '1', 1):
self.unload_model()
def __del__(self):
"""Destructor - ensure model is unloaded."""
try:
if self.is_loaded:
self.unload_model()
except Exception:
pass