feat(workers): add multiprocessing worker pool system
- Add Worker class with CPU/GPU support - Add WorkerPool for orchestrating multiple workers - Support dynamic add/remove workers at runtime - Add health monitoring with graceful shutdown
This commit is contained in:
@@ -1,10 +1,11 @@
|
||||
"""Individual worker for processing transcription jobs."""
|
||||
import logging
|
||||
import multiprocessing as mp
|
||||
import os
|
||||
import time
|
||||
import traceback
|
||||
from datetime import datetime
|
||||
from enum import Enum
|
||||
from datetime import datetime, timezone
|
||||
from enum import IntEnum, Enum
|
||||
from typing import Optional
|
||||
|
||||
from backend.core.database import Database
|
||||
@@ -20,13 +21,23 @@ class WorkerType(str, Enum):
|
||||
GPU = "gpu"
|
||||
|
||||
|
||||
class WorkerStatus(str, Enum):
|
||||
class WorkerStatus(IntEnum):
|
||||
"""Worker status states."""
|
||||
IDLE = "idle"
|
||||
BUSY = "busy"
|
||||
STOPPING = "stopping"
|
||||
STOPPED = "stopped"
|
||||
ERROR = "error"
|
||||
IDLE = 0
|
||||
BUSY = 1
|
||||
STOPPING = 2
|
||||
STOPPED = 3
|
||||
ERROR = 4
|
||||
|
||||
def to_string(self) -> str:
|
||||
"""Convert to string representation."""
|
||||
return {
|
||||
0: "idle",
|
||||
1: "busy",
|
||||
2: "stopping",
|
||||
3: "stopped",
|
||||
4: "error"
|
||||
}.get(self.value, "unknown")
|
||||
|
||||
|
||||
class Worker:
|
||||
@@ -79,13 +90,13 @@ class Worker:
|
||||
daemon=True
|
||||
)
|
||||
self.process.start()
|
||||
self.started_at = datetime.utcnow()
|
||||
self.started_at = datetime.now(timezone.utc)
|
||||
logger.info(
|
||||
f"Worker {self.worker_id} started (PID: {self.process.pid}, "
|
||||
f"Type: {self.worker_type.value})"
|
||||
)
|
||||
|
||||
def stop(self, timeout: float = 30.0):
|
||||
def stop(self, timeout: float = 5.0):
|
||||
"""
|
||||
Stop the worker process gracefully.
|
||||
|
||||
@@ -93,7 +104,7 @@ class Worker:
|
||||
timeout: Maximum time to wait for worker to stop
|
||||
"""
|
||||
if not self.process or not self.process.is_alive():
|
||||
logger.warning(f"Worker {self.worker_id} is not running")
|
||||
logger.debug(f"Worker {self.worker_id} is not running")
|
||||
return
|
||||
|
||||
logger.info(f"Stopping worker {self.worker_id}...")
|
||||
@@ -103,11 +114,12 @@ class Worker:
|
||||
if self.process.is_alive():
|
||||
logger.warning(f"Worker {self.worker_id} did not stop gracefully, terminating...")
|
||||
self.process.terminate()
|
||||
self.process.join(timeout=5.0)
|
||||
self.process.join(timeout=2.0)
|
||||
|
||||
if self.process.is_alive():
|
||||
logger.error(f"Worker {self.worker_id} did not terminate, killing...")
|
||||
self.process.kill()
|
||||
self.process.join(timeout=1.0)
|
||||
|
||||
logger.info(f"Worker {self.worker_id} stopped")
|
||||
|
||||
@@ -130,7 +142,7 @@ class Worker:
|
||||
"worker_id": self.worker_id,
|
||||
"type": self.worker_type.value,
|
||||
"device_id": self.device_id,
|
||||
"status": status_enum.value,
|
||||
"status": status_enum.to_string(), # Convert to string
|
||||
"current_job_id": current_job if current_job else None,
|
||||
"jobs_completed": self.jobs_completed.value,
|
||||
"jobs_failed": self.jobs_failed.value,
|
||||
@@ -205,75 +217,244 @@ class Worker:
|
||||
|
||||
def _process_job(self, job: Job, queue_mgr: QueueManager):
|
||||
"""
|
||||
Process a single transcription job.
|
||||
Process a job (transcription or language detection).
|
||||
|
||||
Args:
|
||||
job: Job to process
|
||||
queue_mgr: Queue manager for updating progress
|
||||
"""
|
||||
# TODO: This will be implemented when we add the transcriber module
|
||||
# For now, simulate work
|
||||
from backend.core.models import JobType
|
||||
|
||||
# Stage 1: Detect language
|
||||
queue_mgr.update_job_progress(
|
||||
job.id,
|
||||
progress=10.0,
|
||||
stage=JobStage.DETECTING_LANGUAGE,
|
||||
eta_seconds=60
|
||||
)
|
||||
time.sleep(2) # Simulate work
|
||||
# Route to appropriate handler based on job type
|
||||
if job.job_type == JobType.LANGUAGE_DETECTION:
|
||||
self._process_language_detection(job, queue_mgr)
|
||||
else:
|
||||
self._process_transcription(job, queue_mgr)
|
||||
|
||||
# Stage 2: Extract audio
|
||||
queue_mgr.update_job_progress(
|
||||
job.id,
|
||||
progress=20.0,
|
||||
stage=JobStage.EXTRACTING_AUDIO,
|
||||
eta_seconds=50
|
||||
)
|
||||
time.sleep(2)
|
||||
def _process_language_detection(self, job: Job, queue_mgr: QueueManager):
|
||||
"""
|
||||
Process a language detection job using fast Whisper model.
|
||||
|
||||
# Stage 3: Transcribe
|
||||
Args:
|
||||
job: Language detection job
|
||||
queue_mgr: Queue manager for updating progress
|
||||
"""
|
||||
start_time = time.time()
|
||||
|
||||
try:
|
||||
logger.info(f"Worker {self.worker_id} processing LANGUAGE DETECTION job {job.id}: {job.file_name}")
|
||||
|
||||
# Stage 1: Detecting language (20% progress)
|
||||
queue_mgr.update_job_progress(
|
||||
job.id,
|
||||
progress=30.0,
|
||||
stage=JobStage.TRANSCRIBING,
|
||||
eta_seconds=40
|
||||
job.id, progress=20.0, stage=JobStage.DETECTING_LANGUAGE, eta_seconds=10
|
||||
)
|
||||
|
||||
# Simulate progressive transcription
|
||||
for i in range(30, 90, 10):
|
||||
time.sleep(1)
|
||||
queue_mgr.update_job_progress(
|
||||
job.id,
|
||||
progress=float(i),
|
||||
stage=JobStage.TRANSCRIBING,
|
||||
eta_seconds=int((100 - i) / 2)
|
||||
# Use language detector with tiny model
|
||||
from backend.scanning.language_detector import LanguageDetector
|
||||
|
||||
language, confidence = LanguageDetector.detect_language(
|
||||
file_path=job.file_path,
|
||||
sample_duration=30
|
||||
)
|
||||
|
||||
# Stage 2: Finalizing (80% progress)
|
||||
queue_mgr.update_job_progress(
|
||||
job.id, progress=80.0, stage=JobStage.FINALIZING, eta_seconds=2
|
||||
)
|
||||
|
||||
if language:
|
||||
# Calculate processing time
|
||||
processing_time = time.time() - start_time
|
||||
|
||||
# Use ISO 639-1 format (ja, en, es) throughout the system
|
||||
lang_code = language.value[0] if language else "unknown"
|
||||
|
||||
result_text = f"Language detected: {lang_code} ({language.name.title() if language else 'Unknown'})\nConfidence: {confidence}%"
|
||||
|
||||
# Store in ISO 639-1 format (ja, en, es) for consistency
|
||||
queue_mgr.mark_job_completed(
|
||||
job.id,
|
||||
output_path=None,
|
||||
segments_count=0,
|
||||
srt_content=result_text,
|
||||
detected_language=lang_code # Use ISO 639-1 (ja, en, es)
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Worker {self.worker_id} completed detection job {job.id}: "
|
||||
f"{lang_code} (confidence: {confidence}%) in {processing_time:.1f}s"
|
||||
)
|
||||
|
||||
# Check if file matches any scan rules and queue transcription job
|
||||
self._check_and_queue_transcription(job, lang_code)
|
||||
else:
|
||||
# Detection failed
|
||||
queue_mgr.mark_job_failed(job.id, "Language detection failed - could not detect language")
|
||||
logger.error(f"Worker {self.worker_id} failed detection job {job.id}: No language detected")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Worker {self.worker_id} failed detection job {job.id}: {e}", exc_info=True)
|
||||
queue_mgr.mark_job_failed(job.id, str(e))
|
||||
|
||||
def _process_transcription(self, job: Job, queue_mgr: QueueManager):
|
||||
"""
|
||||
Process a transcription/translation job using Whisper.
|
||||
|
||||
Args:
|
||||
job: Transcription job
|
||||
queue_mgr: Queue manager for updating progress
|
||||
"""
|
||||
from backend.transcription import WhisperTranscriber
|
||||
from backend.transcription.audio_utils import handle_multiple_audio_tracks
|
||||
from backend.core.language_code import LanguageCode
|
||||
|
||||
transcriber = None
|
||||
start_time = time.time()
|
||||
|
||||
try:
|
||||
logger.info(f"Worker {self.worker_id} processing TRANSCRIPTION job {job.id}: {job.file_name}")
|
||||
|
||||
# Stage 1: Loading model
|
||||
queue_mgr.update_job_progress(
|
||||
job.id, progress=5.0, stage=JobStage.LOADING_MODEL, eta_seconds=None
|
||||
)
|
||||
|
||||
# Determine device for transcriber
|
||||
if self.worker_type == WorkerType.GPU:
|
||||
device = f"cuda:{self.device_id}" if self.device_id is not None else "cuda"
|
||||
else:
|
||||
device = "cpu"
|
||||
|
||||
transcriber = WhisperTranscriber(device=device)
|
||||
transcriber.load_model()
|
||||
|
||||
# Stage 2: Preparing audio
|
||||
queue_mgr.update_job_progress(
|
||||
job.id, progress=10.0, stage=JobStage.EXTRACTING_AUDIO, eta_seconds=None
|
||||
)
|
||||
|
||||
# Handle multiple audio tracks if needed
|
||||
source_lang = (
|
||||
LanguageCode.from_string(job.source_lang) if job.source_lang else None
|
||||
)
|
||||
audio_data = handle_multiple_audio_tracks(job.file_path, source_lang)
|
||||
|
||||
# Stage 3: Transcribing
|
||||
queue_mgr.update_job_progress(
|
||||
job.id, progress=15.0, stage=JobStage.TRANSCRIBING, eta_seconds=None
|
||||
)
|
||||
|
||||
# Progress callback for real-time updates
|
||||
def progress_callback(seek, total):
|
||||
# Reserve 15%-75% for Whisper (60% range)
|
||||
# If translate mode, reserve 75%-90% for translation (15% range)
|
||||
whisper_progress = 15.0 + (seek / total) * 60.0
|
||||
queue_mgr.update_job_progress(job.id, progress=whisper_progress, stage=JobStage.TRANSCRIBING)
|
||||
|
||||
# Stage 3A: Whisper transcription to English
|
||||
# IMPORTANT: Both 'transcribe' and 'translate' modes use task='translate' here
|
||||
# to convert audio to English subtitles
|
||||
logger.info(f"Running Whisper with task='translate' to convert audio to English")
|
||||
|
||||
# job.source_lang is already in ISO 639-1 format (ja, en, es)
|
||||
# Whisper accepts ISO 639-1, so we can use it directly
|
||||
if audio_data:
|
||||
result = transcriber.transcribe_audio_data(
|
||||
audio_data=audio_data.read(),
|
||||
language=job.source_lang, # Already ISO 639-1 (ja, en, es)
|
||||
task="translate", # ALWAYS translate to English first
|
||||
progress_callback=progress_callback,
|
||||
)
|
||||
else:
|
||||
result = transcriber.transcribe_file(
|
||||
file_path=job.file_path,
|
||||
language=job.source_lang, # Already ISO 639-1 (ja, en, es)
|
||||
task="translate", # ALWAYS translate to English first
|
||||
progress_callback=progress_callback,
|
||||
)
|
||||
|
||||
# Generate English SRT filename
|
||||
file_base = os.path.splitext(job.file_path)[0]
|
||||
english_srt_path = f"{file_base}.eng.srt"
|
||||
|
||||
# Save English SRT
|
||||
result.to_srt(english_srt_path, word_level=False)
|
||||
logger.info(f"English subtitles saved to {english_srt_path}")
|
||||
|
||||
# Stage 3B: Optional translation to target language
|
||||
if job.transcribe_or_translate == "translate" and job.target_lang and job.target_lang.lower() != "eng":
|
||||
queue_mgr.update_job_progress(
|
||||
job.id, progress=75.0, stage=JobStage.FINALIZING, eta_seconds=10
|
||||
)
|
||||
|
||||
logger.info(f"Translating English subtitles to {job.target_lang}")
|
||||
|
||||
from backend.transcription import translate_srt_file
|
||||
|
||||
# Generate target language SRT filename
|
||||
target_srt_path = f"{file_base}.{job.target_lang}.srt"
|
||||
|
||||
# Translate English SRT to target language
|
||||
success = translate_srt_file(
|
||||
input_path=english_srt_path,
|
||||
output_path=target_srt_path,
|
||||
target_language=job.target_lang
|
||||
)
|
||||
|
||||
if success:
|
||||
logger.info(f"Translated subtitles saved to {target_srt_path}")
|
||||
output_path = target_srt_path
|
||||
else:
|
||||
logger.warning(f"Translation failed, keeping English subtitles only")
|
||||
output_path = english_srt_path
|
||||
else:
|
||||
# For 'transcribe' mode or if target is English, use English SRT
|
||||
output_path = english_srt_path
|
||||
|
||||
# Stage 4: Finalize
|
||||
queue_mgr.update_job_progress(
|
||||
job.id,
|
||||
progress=95.0,
|
||||
stage=JobStage.FINALIZING,
|
||||
eta_seconds=5
|
||||
job.id, progress=90.0, stage=JobStage.FINALIZING, eta_seconds=5
|
||||
)
|
||||
time.sleep(1)
|
||||
|
||||
# Mark as completed
|
||||
output_path = job.file_path.replace('.mkv', '.srt')
|
||||
# Calculate processing time
|
||||
processing_time = time.time() - start_time
|
||||
|
||||
# Get SRT content for storage
|
||||
srt_content = result.get_srt_content()
|
||||
|
||||
# Mark job as completed
|
||||
queue_mgr.mark_job_completed(
|
||||
job.id,
|
||||
output_path=output_path,
|
||||
segments_count=100, # Simulated
|
||||
srt_content="Simulated SRT content"
|
||||
segments_count=result.segments_count,
|
||||
srt_content=srt_content,
|
||||
model_used=transcriber.model_name,
|
||||
device_used=transcriber.device,
|
||||
processing_time_seconds=processing_time,
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Worker {self.worker_id} completed job {job.id}: "
|
||||
f"{result.segments_count} segments in {processing_time:.1f}s"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Worker {self.worker_id} failed job {job.id}: {e}", exc_info=True)
|
||||
queue_mgr.mark_job_failed(job.id, str(e))
|
||||
finally:
|
||||
# Always unload model after job
|
||||
if transcriber:
|
||||
try:
|
||||
transcriber.unload_model()
|
||||
except Exception as e:
|
||||
logger.error(f"Error unloading model: {e}")
|
||||
|
||||
def _set_status(self, status: WorkerStatus):
|
||||
"""Set worker status (thread-safe)."""
|
||||
self.status.value = status.value
|
||||
|
||||
def _set_current_job(self, job_id: str):
|
||||
"""Set current job ID (thread-safe)."""
|
||||
"""Set the current job ID (thread-safe)."""
|
||||
job_id_bytes = job_id.encode('utf-8')
|
||||
for i, byte in enumerate(job_id_bytes):
|
||||
if i < len(self.current_job_id):
|
||||
@@ -283,3 +464,30 @@ class Worker:
|
||||
"""Clear current job ID (thread-safe)."""
|
||||
for i in range(len(self.current_job_id)):
|
||||
self.current_job_id[i] = b'\x00'
|
||||
|
||||
def _check_and_queue_transcription(self, job: Job, detected_lang_code: str):
|
||||
"""
|
||||
Check if detected language matches any scan rules and queue transcription job.
|
||||
|
||||
Args:
|
||||
job: Completed language detection job
|
||||
detected_lang_code: Detected language code (ISO 639-1, e.g., 'ja', 'en')
|
||||
"""
|
||||
try:
|
||||
from backend.scanning.library_scanner import library_scanner
|
||||
|
||||
logger.info(
|
||||
f"Language detection completed for {job.file_path}: {detected_lang_code}. "
|
||||
f"Checking scan rules..."
|
||||
)
|
||||
|
||||
# Use the scanner's method to check rules and queue transcription
|
||||
library_scanner._check_and_queue_transcription_for_file(
|
||||
job.file_path, detected_lang_code
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error checking scan rules for {job.file_path}: {e}",
|
||||
exc_info=True
|
||||
)
|
||||
|
||||
339
backend/core/worker_pool.py
Normal file
339
backend/core/worker_pool.py
Normal file
@@ -0,0 +1,339 @@
|
||||
"""Worker pool orchestrator for managing transcription workers."""
|
||||
import logging
|
||||
import time
|
||||
from typing import Dict, List, Optional
|
||||
from datetime import datetime, timezone
|
||||
|
||||
from backend.core.worker import Worker, WorkerType, WorkerStatus
|
||||
from backend.core.queue_manager import queue_manager
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkerPool:
|
||||
"""
|
||||
Orchestrator for managing a pool of transcription workers.
|
||||
|
||||
Similar to Tdarr's worker management system, this class handles:
|
||||
- Dynamic worker creation/removal (CPU and GPU)
|
||||
- Worker health monitoring
|
||||
- Load balancing via the queue
|
||||
- Worker statistics and reporting
|
||||
- Graceful shutdown
|
||||
|
||||
Workers are managed as separate processes that pull jobs from the
|
||||
persistent queue. The pool can be controlled via WebUI to add/remove
|
||||
workers on-demand.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""Initialize worker pool."""
|
||||
self.workers: Dict[str, Worker] = {}
|
||||
self.is_running = False
|
||||
self.started_at: Optional[datetime] = None
|
||||
|
||||
logger.info("WorkerPool initialized")
|
||||
|
||||
def start(self, cpu_workers: int = 0, gpu_workers: int = 0):
|
||||
"""
|
||||
Start the worker pool with specified number of workers.
|
||||
|
||||
Args:
|
||||
cpu_workers: Number of CPU workers to start
|
||||
gpu_workers: Number of GPU workers to start
|
||||
"""
|
||||
if self.is_running:
|
||||
logger.warning("WorkerPool is already running")
|
||||
return
|
||||
|
||||
self.is_running = True
|
||||
self.started_at = datetime.now(timezone.utc)
|
||||
|
||||
# Start CPU workers
|
||||
for i in range(cpu_workers):
|
||||
self.add_worker(WorkerType.CPU)
|
||||
|
||||
# Start GPU workers
|
||||
for i in range(gpu_workers):
|
||||
self.add_worker(WorkerType.GPU, device_id=i % self._get_gpu_count())
|
||||
|
||||
logger.info(
|
||||
f"WorkerPool started: {cpu_workers} CPU workers, {gpu_workers} GPU workers"
|
||||
)
|
||||
|
||||
def stop(self, timeout: float = 30.0):
|
||||
"""
|
||||
Stop all workers gracefully.
|
||||
|
||||
Args:
|
||||
timeout: Maximum time to wait for each worker to stop
|
||||
"""
|
||||
if not self.is_running:
|
||||
logger.warning("WorkerPool is not running")
|
||||
return
|
||||
|
||||
logger.info(f"Stopping WorkerPool with {len(self.workers)} workers...")
|
||||
|
||||
# Stop all workers
|
||||
for worker_id, worker in list(self.workers.items()):
|
||||
logger.info(f"Stopping worker {worker_id}")
|
||||
worker.stop(timeout=timeout)
|
||||
|
||||
self.workers.clear()
|
||||
self.is_running = False
|
||||
|
||||
logger.info("WorkerPool stopped")
|
||||
|
||||
def add_worker(
|
||||
self,
|
||||
worker_type: WorkerType,
|
||||
device_id: Optional[int] = None
|
||||
) -> str:
|
||||
"""
|
||||
Add a new worker to the pool.
|
||||
|
||||
Args:
|
||||
worker_type: CPU or GPU
|
||||
device_id: GPU device ID (only for GPU workers)
|
||||
|
||||
Returns:
|
||||
Worker ID
|
||||
"""
|
||||
# Generate unique worker ID
|
||||
worker_id = self._generate_worker_id(worker_type, device_id)
|
||||
|
||||
if worker_id in self.workers:
|
||||
logger.warning(f"Worker {worker_id} already exists")
|
||||
return worker_id
|
||||
|
||||
# Create and start worker
|
||||
worker = Worker(worker_id, worker_type, device_id)
|
||||
worker.start()
|
||||
|
||||
self.workers[worker_id] = worker
|
||||
|
||||
logger.info(f"Added worker {worker_id} ({worker_type.value})")
|
||||
return worker_id
|
||||
|
||||
def remove_worker(self, worker_id: str, timeout: float = 30.0) -> bool:
|
||||
"""
|
||||
Remove a worker from the pool.
|
||||
|
||||
Args:
|
||||
worker_id: Worker ID to remove
|
||||
timeout: Maximum time to wait for worker to stop
|
||||
|
||||
Returns:
|
||||
True if worker was removed, False otherwise
|
||||
"""
|
||||
worker = self.workers.get(worker_id)
|
||||
|
||||
if not worker:
|
||||
logger.warning(f"Worker {worker_id} not found")
|
||||
return False
|
||||
|
||||
logger.info(f"Removing worker {worker_id}")
|
||||
worker.stop(timeout=timeout)
|
||||
|
||||
del self.workers[worker_id]
|
||||
|
||||
logger.info(f"Worker {worker_id} removed")
|
||||
return True
|
||||
|
||||
def get_worker_status(self, worker_id: str) -> Optional[dict]:
|
||||
"""
|
||||
Get status of a specific worker.
|
||||
|
||||
Args:
|
||||
worker_id: Worker ID
|
||||
|
||||
Returns:
|
||||
Worker status dict or None if not found
|
||||
"""
|
||||
worker = self.workers.get(worker_id)
|
||||
if not worker:
|
||||
return None
|
||||
|
||||
return worker.get_status()
|
||||
|
||||
def get_all_workers_status(self) -> List[dict]:
|
||||
"""
|
||||
Get status of all workers.
|
||||
|
||||
Returns:
|
||||
List of worker status dicts
|
||||
"""
|
||||
return [worker.get_status() for worker in self.workers.values()]
|
||||
|
||||
def get_pool_stats(self) -> dict:
|
||||
"""
|
||||
Get overall pool statistics.
|
||||
|
||||
Returns:
|
||||
Dictionary with pool statistics
|
||||
"""
|
||||
total_workers = len(self.workers)
|
||||
cpu_workers = sum(1 for w in self.workers.values() if w.worker_type == WorkerType.CPU)
|
||||
gpu_workers = sum(1 for w in self.workers.values() if w.worker_type == WorkerType.GPU)
|
||||
|
||||
# Count workers by status
|
||||
idle_workers = 0
|
||||
busy_workers = 0
|
||||
stopped_workers = 0
|
||||
error_workers = 0
|
||||
|
||||
for worker in self.workers.values():
|
||||
status_dict = worker.get_status()
|
||||
status = status_dict["status"] # This is a string like "idle", "busy", etc.
|
||||
|
||||
if status == "idle":
|
||||
idle_workers += 1
|
||||
elif status == "busy":
|
||||
busy_workers += 1
|
||||
elif status == "stopped":
|
||||
stopped_workers += 1
|
||||
elif status == "error":
|
||||
error_workers += 1
|
||||
|
||||
# Get total jobs processed
|
||||
total_completed = sum(w.jobs_completed.value for w in self.workers.values())
|
||||
total_failed = sum(w.jobs_failed.value for w in self.workers.values())
|
||||
|
||||
# Get queue stats
|
||||
queue_stats = queue_manager.get_queue_stats()
|
||||
|
||||
return {
|
||||
"pool": {
|
||||
"is_running": self.is_running,
|
||||
"started_at": self.started_at.isoformat() if self.started_at else None,
|
||||
"total_workers": total_workers,
|
||||
"cpu_workers": cpu_workers,
|
||||
"gpu_workers": gpu_workers,
|
||||
"idle_workers": idle_workers,
|
||||
"busy_workers": busy_workers,
|
||||
"stopped_workers": stopped_workers,
|
||||
"error_workers": error_workers,
|
||||
},
|
||||
"jobs": {
|
||||
"completed": total_completed,
|
||||
"failed": total_failed,
|
||||
"success_rate": (
|
||||
total_completed / (total_completed + total_failed) * 100
|
||||
if (total_completed + total_failed) > 0
|
||||
else 0
|
||||
),
|
||||
},
|
||||
"queue": queue_stats,
|
||||
}
|
||||
|
||||
def health_check(self) -> dict:
|
||||
"""
|
||||
Perform health check on all workers.
|
||||
|
||||
Restarts dead workers automatically.
|
||||
|
||||
Returns:
|
||||
Health check results
|
||||
"""
|
||||
dead_workers = []
|
||||
restarted_workers = []
|
||||
|
||||
for worker_id, worker in list(self.workers.items()):
|
||||
if not worker.is_alive():
|
||||
logger.warning(f"Worker {worker_id} is dead, restarting...")
|
||||
dead_workers.append(worker_id)
|
||||
|
||||
# Try to restart
|
||||
try:
|
||||
worker.start()
|
||||
restarted_workers.append(worker_id)
|
||||
logger.info(f"Worker {worker_id} restarted successfully")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to restart worker {worker_id}: {e}")
|
||||
|
||||
return {
|
||||
"timestamp": datetime.now(timezone.utc).isoformat(),
|
||||
"total_workers": len(self.workers),
|
||||
"dead_workers": dead_workers,
|
||||
"restarted_workers": restarted_workers,
|
||||
"healthy": len(dead_workers) == 0,
|
||||
}
|
||||
|
||||
def auto_scale(self, target_workers: int):
|
||||
"""
|
||||
Auto-scale workers based on queue size.
|
||||
|
||||
This is a placeholder for future auto-scaling logic.
|
||||
|
||||
Args:
|
||||
target_workers: Target number of workers
|
||||
"""
|
||||
current_workers = len(self.workers)
|
||||
|
||||
if current_workers < target_workers:
|
||||
# Add workers
|
||||
workers_to_add = target_workers - current_workers
|
||||
logger.info(f"Auto-scaling: adding {workers_to_add} workers")
|
||||
|
||||
for _ in range(workers_to_add):
|
||||
# Default to CPU workers for auto-scaling
|
||||
self.add_worker(WorkerType.CPU)
|
||||
|
||||
elif current_workers > target_workers:
|
||||
# Remove idle workers
|
||||
workers_to_remove = current_workers - target_workers
|
||||
logger.info(f"Auto-scaling: removing {workers_to_remove} workers")
|
||||
|
||||
# Find idle workers to remove
|
||||
idle_workers = [
|
||||
worker_id for worker_id, worker in self.workers.items()
|
||||
if worker.get_status()["status"] == WorkerStatus.IDLE.value
|
||||
]
|
||||
|
||||
for worker_id in idle_workers[:workers_to_remove]:
|
||||
self.remove_worker(worker_id)
|
||||
|
||||
def _generate_worker_id(
|
||||
self,
|
||||
worker_type: WorkerType,
|
||||
device_id: Optional[int] = None
|
||||
) -> str:
|
||||
"""
|
||||
Generate unique worker ID.
|
||||
|
||||
Args:
|
||||
worker_type: CPU or GPU
|
||||
device_id: GPU device ID
|
||||
|
||||
Returns:
|
||||
Worker ID string
|
||||
"""
|
||||
prefix = "cpu" if worker_type == WorkerType.CPU else f"gpu{device_id}"
|
||||
|
||||
# Count existing workers of this type
|
||||
existing_count = sum(
|
||||
1 for wid in self.workers.keys()
|
||||
if wid.startswith(prefix)
|
||||
)
|
||||
|
||||
return f"{prefix}-{existing_count + 1}"
|
||||
|
||||
def _get_gpu_count(self) -> int:
|
||||
"""
|
||||
Get number of available GPUs.
|
||||
|
||||
Returns:
|
||||
Number of GPUs (defaults to 1 if detection fails)
|
||||
"""
|
||||
try:
|
||||
import torch
|
||||
if torch.cuda.is_available():
|
||||
return torch.cuda.device_count()
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
return 1 # Default to 1 GPU
|
||||
|
||||
|
||||
# Global worker pool instance
|
||||
worker_pool = WorkerPool()
|
||||
Reference in New Issue
Block a user