diff --git a/subgen.py b/subgen.py index ba6dcb0..46e7aa1 100644 --- a/subgen.py +++ b/subgen.py @@ -60,6 +60,7 @@ reload_script_on_change = convert_to_bool(os.getenv('RELOAD_SCRIPT_ON_CHANGE', F model_prompt = os.getenv('USE_MODEL_PROMPT', 'False') custom_model_prompt = os.getenv('CUSTOM_MODEL_PROMPT', '') lrc_for_audio_files = convert_to_bool(os.getenv('LRC_FOR_AUDIO_FILES', True)) +custom_regroup = os.getenv('CUSTOM_REGROUP', 'cm_sl=84_sl=42++++++1') if transcribe_device == "gpu": transcribe_device = "cuda" @@ -335,9 +336,12 @@ def asr( start_model() files_to_transcribe.insert(0, f"Bazarr-asr-{random_name}") audio_data = np.frombuffer(audio_file.file.read(), np.int16).flatten().astype(np.float32) / 32768.0 - if(model_prompt): + if model_prompt: custom_model_prompt = greetings_translations.get(language, '') or custom_model_prompt - result = model.transcribe_stable(audio_data, task=task, input_sr=16000, language=language, progress_callback=progress, initial_prompt=custom_model_prompt) + if custom_regroup: + result = model.transcribe_stable(audio_data, task=task, input_sr=16000, language=language, progress_callback=progress, initial_prompt=custom_model_prompt, regroup=custom_regroup) + else: + result = model.transcribe_stable(audio_data, task=task, input_sr=16000, language=language, progress_callback=progress, initial_prompt=custom_model_prompt) appendLine(result) elapsed_time = time.time() - start_time minutes, seconds = divmod(int(elapsed_time), 60) @@ -448,7 +452,10 @@ def gen_subtitles(file_path: str, transcribe_or_translate: str, front=True, forc if force_detected_language_to: forceLanguage = force_detected_language_to logging.info(f"Forcing language to {forceLanguage}") - result = model.transcribe_stable(file_path, language=forceLanguage, task=transcribe_or_translate, progress_callback=progress, initial_prompt=custom_model_prompt) + if custom_regroup: + result = model.transcribe_stable(file_path, language=forceLanguage, task=transcribe_or_translate, progress_callback=progress, initial_prompt=custom_model_prompt, regroup=custom_regroup) + else: + result = model.transcribe_stable(file_path, language=forceLanguage, task=transcribe_or_translate, progress_callback=progress, initial_prompt=custom_model_prompt) appendLine(result) file_name, file_extension = os.path.splitext(file_path) if isAudioFileExtension(file_extension) and lrc_for_audio_files: