diff --git a/subgen.py b/subgen.py index 5ab97fb..d16a9c5 100644 --- a/subgen.py +++ b/subgen.py @@ -93,6 +93,8 @@ def update_env_variables(): lrc_for_audio_files = convert_to_bool(os.getenv('LRC_FOR_AUDIO_FILES', True)) custom_regroup = os.getenv('CUSTOM_REGROUP', 'cm_sl=84_sl=42++++++1') + set_env_variables('subgen.env') + if transcribe_device == "gpu": transcribe_device = "cuda" @@ -443,11 +445,11 @@ def asr( files_to_transcribe.insert(0, f"Bazarr-asr-{random_name}") audio_data = np.frombuffer(audio_file.file.read(), np.int16).flatten().astype(np.float32) / 32768.0 if model_prompt: - custom_model_prompt = greetings_translations.get(language, '') or custom_model_prompt + custom_prompt = greetings_translations.get(language, '') or custom_model_prompt if custom_regroup: - result = model.transcribe_stable(audio_data, task=task, input_sr=16000, language=language, progress_callback=progress, initial_prompt=custom_model_prompt, regroup=custom_regroup) + result = model.transcribe_stable(audio_data, task=task, input_sr=16000, language=language, progress_callback=progress, initial_prompt=custom_prompt, regroup=custom_regroup) else: - result = model.transcribe_stable(audio_data, task=task, input_sr=16000, language=language, progress_callback=progress, initial_prompt=custom_model_prompt) + result = model.transcribe_stable(audio_data, task=task, input_sr=16000, language=language, progress_callback=progress, initial_prompt=custom_prompt) appendLine(result) elapsed_time = time.time() - start_time minutes, seconds = divmod(int(elapsed_time), 60)